ADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE

Authors

  • A. Bayati Eshkaftaki Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran.
  • N. Eftekhari Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran.
Abstract:

‎In this work‎, ‎we investigate admitting center map on multiplicative metric space‎ ‎and establish some fixed point theorems for such maps‎. ‎We modify the Banach contraction principle and‎ ‎the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some‎ ‎useful theorems‎. ‎Our results on multiplicative metric space improve and modify‎ ‎some fixed point theorems in the literature‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Proximity Point Properties for Admitting Center Maps

In this work we investigate a class of admitting center maps on a metric space. We state and prove some fixed point and best proximity point theorems for them. We obtain some results and relevant examples. In particular, we show that if $X$ is a reflexive Banach space with the Opial condition and $T:Crightarrow X$ is a continuous admiting center map, then $T$ has a fixed point in $X.$ Also, we ...

full text

Space-Times Admitting Isolated Horizons

We characterize a general solution to the vacuum Einstein equations which admits isolated horizons. We show it is a non-linear superposition – in precise sense – of the Schwarzschild metric with a certain free data set propagating tangentially to the horizon. This proves Ashtekar’s conjecture about the structure of spacetime near the isolated horizon. The same superposition method applied to th...

full text

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

full text

Contractive maps in Mustafa-Sims metric spaces

The xed point result in Mustafa-Sims metrical structures obtained by Karapinar and Agarwal[Fixed Point Th. Appl., 2013, 2013:154] is deductible from a corresponding one stated in terms ofanticipative contractions over the associated (standard) metric space.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  39- 51

publication date 2020-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023